Line data Source code
1 : // Copyright (c) 2016 Jeremy Rubin
2 : // Distributed under the MIT software license, see the accompanying
3 : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 :
5 : #ifndef BITCOIN_CUCKOOCACHE_H
6 : #define BITCOIN_CUCKOOCACHE_H
7 :
8 : #include <algorithm> // std::find
9 : #include <array>
10 : #include <atomic>
11 : #include <cmath>
12 : #include <cstring>
13 : #include <memory>
14 : #include <utility>
15 : #include <vector>
16 :
17 :
18 : /** High-performance cache primitives.
19 : *
20 : * Summary:
21 : *
22 : * 1. @ref bit_packed_atomic_flags is bit-packed atomic flags for garbage collection
23 : *
24 : * 2. @ref cache is a cache which is performant in memory usage and lookup speed. It
25 : * is lockfree for erase operations. Elements are lazily erased on the next insert.
26 : */
27 : namespace CuckooCache
28 : {
29 : /** @ref bit_packed_atomic_flags implements a container for garbage collection flags
30 : * that is only thread unsafe on calls to setup. This class bit-packs collection
31 : * flags for memory efficiency.
32 : *
33 : * All operations are `std::memory_order_relaxed` so external mechanisms must
34 : * ensure that writes and reads are properly synchronized.
35 : *
36 : * On setup(n), all bits up to `n` are marked as collected.
37 : *
38 : * Under the hood, because it is an 8-bit type, it makes sense to use a multiple
39 : * of 8 for setup, but it will be safe if that is not the case as well.
40 : */
41 6550 : class bit_packed_atomic_flags
42 : {
43 : std::unique_ptr<std::atomic<uint8_t>[]> mem;
44 :
45 : public:
46 : /** No default constructor, as there must be some size. */
47 : bit_packed_atomic_flags() = delete;
48 :
49 : /**
50 : * bit_packed_atomic_flags constructor creates memory to sufficiently
51 : * keep track of garbage collection information for `size` entries.
52 : *
53 : * @param size the number of elements to allocate space for
54 : *
55 : * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
56 : * size
57 : * @post All calls to bit_is_set (without subsequent bit_unset) will return
58 : * true.
59 : */
60 6550 : explicit bit_packed_atomic_flags(uint32_t size)
61 3275 : {
62 : // pad out the size if needed
63 3275 : size = (size + 7) / 8;
64 3275 : mem.reset(new std::atomic<uint8_t>[size]);
65 129715403 : for (uint32_t i = 0; i < size; ++i)
66 129712128 : mem[i].store(0xFF);
67 6550 : };
68 :
69 : /** setup marks all entries and ensures that bit_packed_atomic_flags can store
70 : * at least `b` entries.
71 : *
72 : * @param b the number of elements to allocate space for
73 : * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
74 : * b
75 : * @post All calls to bit_is_set (without subsequent bit_unset) will return
76 : * true.
77 : */
78 1986 : inline void setup(uint32_t b)
79 : {
80 1986 : bit_packed_atomic_flags d(b);
81 1986 : std::swap(mem, d.mem);
82 1986 : }
83 :
84 : /** bit_set sets an entry as discardable.
85 : *
86 : * @param s the index of the entry to bit_set
87 : * @post immediately subsequent call (assuming proper external memory
88 : * ordering) to bit_is_set(s) == true.
89 : */
90 2213105 : inline void bit_set(uint32_t s)
91 : {
92 2213105 : mem[s >> 3].fetch_or(1 << (s & 7), std::memory_order_relaxed);
93 2213105 : }
94 :
95 : /** bit_unset marks an entry as something that should not be overwritten.
96 : *
97 : * @param s the index of the entry to bit_unset
98 : * @post immediately subsequent call (assuming proper external memory
99 : * ordering) to bit_is_set(s) == false.
100 : */
101 2172962 : inline void bit_unset(uint32_t s)
102 : {
103 2172962 : mem[s >> 3].fetch_and(~(1 << (s & 7)), std::memory_order_relaxed);
104 2172962 : }
105 :
106 : /** bit_is_set queries the table for discardability at `s`.
107 : *
108 : * @param s the index of the entry to read
109 : * @returns true if the bit at index `s` was set, false otherwise
110 : * */
111 10943103 : inline bool bit_is_set(uint32_t s) const
112 : {
113 10943103 : return (1 << (s & 7)) & mem[s >> 3].load(std::memory_order_relaxed);
114 : }
115 : };
116 :
117 : /** @ref cache implements a cache with properties similar to a cuckoo-set.
118 : *
119 : * The cache is able to hold up to `(~(uint32_t)0) - 1` elements.
120 : *
121 : * Read Operations:
122 : * - contains() for `erase=false`
123 : *
124 : * Read+Erase Operations:
125 : * - contains() for `erase=true`
126 : *
127 : * Erase Operations:
128 : * - allow_erase()
129 : *
130 : * Write Operations:
131 : * - setup()
132 : * - setup_bytes()
133 : * - insert()
134 : * - please_keep()
135 : *
136 : * Synchronization Free Operations:
137 : * - invalid()
138 : * - compute_hashes()
139 : *
140 : * User Must Guarantee:
141 : *
142 : * 1. Write requires synchronized access (e.g. a lock)
143 : * 2. Read requires no concurrent Write, synchronized with last insert.
144 : * 3. Erase requires no concurrent Write, synchronized with last insert.
145 : * 4. An Erase caller must release all memory before allowing a new Writer.
146 : *
147 : *
148 : * Note on function names:
149 : * - The name "allow_erase" is used because the real discard happens later.
150 : * - The name "please_keep" is used because elements may be erased anyways on insert.
151 : *
152 : * @tparam Element should be a movable and copyable type
153 : * @tparam Hash should be a function/callable which takes a template parameter
154 : * hash_select and an Element and extracts a hash from it. Should return
155 : * high-entropy uint32_t hashes for `Hash h; h<0>(e) ... h<7>(e)`.
156 : */
157 : template <typename Element, typename Hash>
158 2578 : class cache
159 : {
160 : private:
161 : /** table stores all the elements */
162 : std::vector<Element> table;
163 :
164 : /** size stores the total available slots in the hash table */
165 : uint32_t size;
166 :
167 : /** The bit_packed_atomic_flags array is marked mutable because we want
168 : * garbage collection to be allowed to occur from const methods */
169 : mutable bit_packed_atomic_flags collection_flags;
170 :
171 : /** epoch_flags tracks how recently an element was inserted into
172 : * the cache. true denotes recent, false denotes not-recent. See insert()
173 : * method for full semantics.
174 : */
175 : mutable std::vector<bool> epoch_flags;
176 :
177 : /** epoch_heuristic_counter is used to determine when an epoch might be aged
178 : * & an expensive scan should be done. epoch_heuristic_counter is
179 : * decremented on insert and reset to the new number of inserts which would
180 : * cause the epoch to reach epoch_size when it reaches zero.
181 : */
182 : uint32_t epoch_heuristic_counter;
183 :
184 : /** epoch_size is set to be the number of elements supposed to be in a
185 : * epoch. When the number of non-erased elements in an epoch
186 : * exceeds epoch_size, a new epoch should be started and all
187 : * current entries demoted. epoch_size is set to be 45% of size because
188 : * we want to keep load around 90%, and we support 3 epochs at once --
189 : * one "dead" which has been erased, one "dying" which has been marked to be
190 : * erased next, and one "living" which new inserts add to.
191 : */
192 : uint32_t epoch_size;
193 :
194 : /** depth_limit determines how many elements insert should try to replace.
195 : * Should be set to log2(n).
196 : */
197 : uint8_t depth_limit;
198 :
199 : /** hash_function is a const instance of the hash function. It cannot be
200 : * static or initialized at call time as it may have internal state (such as
201 : * a nonce).
202 : */
203 : const Hash hash_function;
204 :
205 : /** compute_hashes is convenience for not having to write out this
206 : * expression everywhere we use the hash values of an Element.
207 : *
208 : * We need to map the 32-bit input hash onto a hash bucket in a range [0, size) in a
209 : * manner which preserves as much of the hash's uniformity as possible. Ideally
210 : * this would be done by bitmasking but the size is usually not a power of two.
211 : *
212 : * The naive approach would be to use a mod -- which isn't perfectly uniform but so
213 : * long as the hash is much larger than size it is not that bad. Unfortunately,
214 : * mod/division is fairly slow on ordinary microprocessors (e.g. 90-ish cycles on
215 : * haswell, ARM doesn't even have an instruction for it.); when the divisor is a
216 : * constant the compiler will do clever tricks to turn it into a multiply+add+shift,
217 : * but size is a run-time value so the compiler can't do that here.
218 : *
219 : * One option would be to implement the same trick the compiler uses and compute the
220 : * constants for exact division based on the size, as described in "{N}-bit Unsigned
221 : * Division via {N}-bit Multiply-Add" by Arch D. Robison in 2005. But that code is
222 : * somewhat complicated and the result is still slower than other options:
223 : *
224 : * Instead we treat the 32-bit random number as a Q32 fixed-point number in the range
225 : * [0, 1) and simply multiply it by the size. Then we just shift the result down by
226 : * 32-bits to get our bucket number. The result has non-uniformity the same as a
227 : * mod, but it is much faster to compute. More about this technique can be found at
228 : * http://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/ .
229 : *
230 : * The resulting non-uniformity is also more equally distributed which would be
231 : * advantageous for something like linear probing, though it shouldn't matter
232 : * one way or the other for a cuckoo table.
233 : *
234 : * The primary disadvantage of this approach is increased intermediate precision is
235 : * required but for a 32-bit random number we only need the high 32 bits of a
236 : * 32*32->64 multiply, which means the operation is reasonably fast even on a
237 : * typical 32-bit processor.
238 : *
239 : * @param e The element whose hashes will be returned
240 : * @returns Deterministic hashes derived from `e` uniformly mapped onto the range [0, size)
241 : */
242 4248798 : inline std::array<uint32_t, 8> compute_hashes(const Element& e) const
243 : {
244 4248798 : return {{(uint32_t)(((uint64_t)hash_function.template operator()<0>(e) * (uint64_t)size) >> 32),
245 4248798 : (uint32_t)(((uint64_t)hash_function.template operator()<1>(e) * (uint64_t)size) >> 32),
246 4248798 : (uint32_t)(((uint64_t)hash_function.template operator()<2>(e) * (uint64_t)size) >> 32),
247 4248798 : (uint32_t)(((uint64_t)hash_function.template operator()<3>(e) * (uint64_t)size) >> 32),
248 4248798 : (uint32_t)(((uint64_t)hash_function.template operator()<4>(e) * (uint64_t)size) >> 32),
249 4248798 : (uint32_t)(((uint64_t)hash_function.template operator()<5>(e) * (uint64_t)size) >> 32),
250 4248798 : (uint32_t)(((uint64_t)hash_function.template operator()<6>(e) * (uint64_t)size) >> 32),
251 4248798 : (uint32_t)(((uint64_t)hash_function.template operator()<7>(e) * (uint64_t)size) >> 32)}};
252 : }
253 :
254 : /** invalid returns a special index that can never be inserted to
255 : * @returns the special constexpr index that can never be inserted to */
256 2172962 : constexpr uint32_t invalid() const
257 : {
258 2172962 : return ~(uint32_t)0;
259 : }
260 :
261 : /** allow_erase marks the element at index `n` as discardable. Threadsafe
262 : * without any concurrent insert.
263 : * @param n the index to allow erasure of
264 : */
265 2213212 : inline void allow_erase(uint32_t n) const
266 : {
267 2213212 : collection_flags.bit_set(n);
268 2213212 : }
269 :
270 : /** please_keep marks the element at index `n` as an entry that should be kept.
271 : * Threadsafe without any concurrent insert.
272 : * @param n the index to prioritize keeping
273 : */
274 2172962 : inline void please_keep(uint32_t n) const
275 : {
276 2172962 : collection_flags.bit_unset(n);
277 2172962 : }
278 :
279 : /** epoch_check handles the changing of epochs for elements stored in the
280 : * cache. epoch_check should be run before every insert.
281 : *
282 : * First, epoch_check decrements and checks the cheap heuristic, and then does
283 : * a more expensive scan if the cheap heuristic runs out. If the expensive
284 : * scan succeeds, the epochs are aged and old elements are allow_erased. The
285 : * cheap heuristic is reset to retrigger after the worst case growth of the
286 : * current epoch's elements would exceed the epoch_size.
287 : */
288 2172962 : void epoch_check()
289 : {
290 2172962 : if (epoch_heuristic_counter != 0) {
291 2172878 : --epoch_heuristic_counter;
292 2172878 : return;
293 : }
294 : // count the number of elements from the latest epoch which
295 : // have not been erased.
296 : uint32_t epoch_unused_count = 0;
297 11010132 : for (uint32_t i = 0; i < size; ++i)
298 16511102 : epoch_unused_count += epoch_flags[i] &&
299 5501054 : !collection_flags.bit_is_set(i);
300 : // If there are more non-deleted entries in the current epoch than the
301 : // epoch size, then allow_erase on all elements in the old epoch (marked
302 : // false) and move all elements in the current epoch to the old epoch
303 : // but do not call allow_erase on their indices.
304 84 : if (epoch_unused_count >= epoch_size) {
305 3145752 : for (uint32_t i = 0; i < size; ++i)
306 3145728 : if (epoch_flags[i])
307 1622326 : epoch_flags[i] = false;
308 : else
309 1523402 : allow_erase(i);
310 24 : epoch_heuristic_counter = epoch_size;
311 24 : } else
312 : // reset the epoch_heuristic_counter to next do a scan when worst
313 : // case behavior (no intermittent erases) would exceed epoch size,
314 : // with a reasonable minimum scan size.
315 : // Ordinarily, we would have to sanity check std::min(epoch_size,
316 : // epoch_unused_count), but we already know that `epoch_unused_count
317 : // < epoch_size` in this branch
318 120 : epoch_heuristic_counter = std::max(1u, std::max(epoch_size / 16,
319 60 : epoch_size - epoch_unused_count));
320 2172962 : }
321 :
322 : public:
323 : /** You must always construct a cache with some elements via a subsequent
324 : * call to setup or setup_bytes, otherwise operations may segfault.
325 : */
326 2578 : cache() : table(), size(), collection_flags(0), epoch_flags(),
327 1289 : epoch_heuristic_counter(), epoch_size(), depth_limit(0), hash_function()
328 1289 : {
329 2578 : }
330 :
331 : /** setup initializes the container to store no more than new_size
332 : * elements.
333 : *
334 : * setup should only be called once.
335 : *
336 : * @param new_size the desired number of elements to store
337 : * @returns the maximum number of elements storable
338 : */
339 1986 : uint32_t setup(uint32_t new_size)
340 : {
341 : // depth_limit must be at least one otherwise errors can occur.
342 1986 : depth_limit = static_cast<uint8_t>(std::log2(static_cast<float>(std::max((uint32_t)2, new_size))));
343 1986 : size = std::max<uint32_t>(2, new_size);
344 1986 : table.resize(size);
345 1986 : collection_flags.setup(size);
346 1986 : epoch_flags.resize(size);
347 : // Set to 45% as described above
348 1986 : epoch_size = std::max((uint32_t)1, (45 * size) / 100);
349 : // Initially set to wait for a whole epoch
350 1986 : epoch_heuristic_counter = epoch_size;
351 1986 : return size;
352 : }
353 :
354 : /** setup_bytes is a convenience function which accounts for internal memory
355 : * usage when deciding how many elements to store. It isn't perfect because
356 : * it doesn't account for any overhead (struct size, MallocUsage, collection
357 : * and epoch flags). This was done to simplify selecting a power of two
358 : * size. In the expected use case, an extra two bits per entry should be
359 : * negligible compared to the size of the elements.
360 : *
361 : * @param bytes the approximate number of bytes to use for this data
362 : * structure
363 : * @returns the maximum number of elements storable (see setup()
364 : * documentation for more detail)
365 : */
366 1986 : uint32_t setup_bytes(size_t bytes)
367 : {
368 1986 : return setup(bytes/sizeof(Element));
369 : }
370 :
371 : /** insert loops at most depth_limit times trying to insert a hash
372 : * at various locations in the table via a variant of the Cuckoo Algorithm
373 : * with eight hash locations.
374 : *
375 : * It drops the last tried element if it runs out of depth before
376 : * encountering an open slot.
377 : *
378 : * Thus:
379 : *
380 : * ```
381 : * insert(x);
382 : * return contains(x, false);
383 : * ```
384 : *
385 : * is not guaranteed to return true.
386 : *
387 : * @param e the element to insert
388 : * @post one of the following: All previously inserted elements and e are
389 : * now in the table, one previously inserted element is evicted from the
390 : * table, the entry attempted to be inserted is evicted.
391 : */
392 2172962 : inline void insert(Element e)
393 : {
394 2172962 : epoch_check();
395 2172962 : uint32_t last_loc = invalid();
396 : bool last_epoch = true;
397 2172962 : std::array<uint32_t, 8> locs = compute_hashes(e);
398 : // Make sure we have not already inserted this element
399 : // If we have, make sure that it does not get deleted
400 19556658 : for (const uint32_t loc : locs)
401 17383696 : if (table[loc] == e) {
402 0 : please_keep(loc);
403 0 : epoch_flags[loc] = last_epoch;
404 0 : return;
405 17383696 : }
406 2258764 : for (uint8_t depth = 0; depth < depth_limit; ++depth) {
407 : // First try to insert to an empty slot, if one exists
408 5527851 : for (const uint32_t loc : locs) {
409 5442049 : if (!collection_flags.bit_is_set(loc))
410 3269087 : continue;
411 2172962 : table[loc] = std::move(e);
412 2172962 : please_keep(loc);
413 2172962 : epoch_flags[loc] = last_epoch;
414 2172962 : return;
415 : }
416 : /** Swap with the element at the location that was
417 : * not the last one looked at. Example:
418 : *
419 : * 1. On first iteration, last_loc == invalid(), find returns last, so
420 : * last_loc defaults to locs[0].
421 : * 2. On further iterations, where last_loc == locs[k], last_loc will
422 : * go to locs[k+1 % 8], i.e., next of the 8 indices wrapping around
423 : * to 0 if needed.
424 : *
425 : * This prevents moving the element we just put in.
426 : *
427 : * The swap is not a move -- we must switch onto the evicted element
428 : * for the next iteration.
429 : */
430 85802 : last_loc = locs[(1 + (std::find(locs.begin(), locs.end(), last_loc) - locs.begin())) & 7];
431 85802 : std::swap(table[last_loc], e);
432 : // Can't std::swap a std::vector<bool>::reference and a bool&.
433 85802 : bool epoch = last_epoch;
434 85802 : last_epoch = epoch_flags[last_loc];
435 85802 : epoch_flags[last_loc] = epoch;
436 :
437 : // Recompute the locs -- unfortunately happens one too many times!
438 85802 : locs = compute_hashes(e);
439 : }
440 2172962 : }
441 :
442 : /** contains iterates through the hash locations for a given element
443 : * and checks to see if it is present.
444 : *
445 : * contains does not check garbage collected state (in other words,
446 : * garbage is only collected when the space is needed), so:
447 : *
448 : * ```
449 : * insert(x);
450 : * if (contains(x, true))
451 : * return contains(x, false);
452 : * else
453 : * return true;
454 : * ```
455 : *
456 : * executed on a single thread will always return true!
457 : *
458 : * This is a great property for re-org performance for example.
459 : *
460 : * contains returns a bool set true if the element was found.
461 : *
462 : * @param e the element to check
463 : * @param erase whether to attempt setting the garbage collect flag
464 : *
465 : * @post if erase is true and the element is found, then the garbage collect
466 : * flag is set
467 : * @returns true if the element is found, false otherwise
468 : */
469 1990807 : inline bool contains(const Element& e, const bool erase) const
470 : {
471 1990807 : std::array<uint32_t, 8> locs = compute_hashes(e);
472 7913118 : for (const uint32_t loc : locs)
473 7338514 : if (table[loc] == e) {
474 1417538 : if (erase)
475 690144 : allow_erase(loc);
476 1421993 : return true;
477 5922241 : }
478 569933 : return false;
479 1993380 : }
480 : };
481 : } // namespace CuckooCache
482 :
483 : #endif // BITCOIN_CUCKOOCACHE_H
|