LCOV - code coverage report
Current view: top level - src - cuckoocache.h (source / functions) Hit Total Coverage
Test: total_coverage.info Lines: 102 105 97.1 %
Date: 2020-09-26 01:30:44 Functions: 21 21 100.0 %

          Line data    Source code
       1             : // Copyright (c) 2016 Jeremy Rubin
       2             : // Distributed under the MIT software license, see the accompanying
       3             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4             : 
       5             : #ifndef BITCOIN_CUCKOOCACHE_H
       6             : #define BITCOIN_CUCKOOCACHE_H
       7             : 
       8             : #include <algorithm> // std::find
       9             : #include <array>
      10             : #include <atomic>
      11             : #include <cmath>
      12             : #include <cstring>
      13             : #include <memory>
      14             : #include <utility>
      15             : #include <vector>
      16             : 
      17             : 
      18             : /** High-performance cache primitives.
      19             :  *
      20             :  * Summary:
      21             :  *
      22             :  * 1. @ref bit_packed_atomic_flags is bit-packed atomic flags for garbage collection
      23             :  *
      24             :  * 2. @ref cache is a cache which is performant in memory usage and lookup speed. It
      25             :  * is lockfree for erase operations. Elements are lazily erased on the next insert.
      26             :  */
      27             : namespace CuckooCache
      28             : {
      29             : /** @ref bit_packed_atomic_flags implements a container for garbage collection flags
      30             :  * that is only thread unsafe on calls to setup. This class bit-packs collection
      31             :  * flags for memory efficiency.
      32             :  *
      33             :  * All operations are `std::memory_order_relaxed` so external mechanisms must
      34             :  * ensure that writes and reads are properly synchronized.
      35             :  *
      36             :  * On setup(n), all bits up to `n` are marked as collected.
      37             :  *
      38             :  * Under the hood, because it is an 8-bit type, it makes sense to use a multiple
      39             :  * of 8 for setup, but it will be safe if that is not the case as well.
      40             :  */
      41        6550 : class bit_packed_atomic_flags
      42             : {
      43             :     std::unique_ptr<std::atomic<uint8_t>[]> mem;
      44             : 
      45             : public:
      46             :     /** No default constructor, as there must be some size. */
      47             :     bit_packed_atomic_flags() = delete;
      48             : 
      49             :     /**
      50             :      * bit_packed_atomic_flags constructor creates memory to sufficiently
      51             :      * keep track of garbage collection information for `size` entries.
      52             :      *
      53             :      * @param size the number of elements to allocate space for
      54             :      *
      55             :      * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
      56             :      * size
      57             :      * @post All calls to bit_is_set (without subsequent bit_unset) will return
      58             :      * true.
      59             :      */
      60        6550 :     explicit bit_packed_atomic_flags(uint32_t size)
      61        3275 :     {
      62             :         // pad out the size if needed
      63        3275 :         size = (size + 7) / 8;
      64        3275 :         mem.reset(new std::atomic<uint8_t>[size]);
      65   129715403 :         for (uint32_t i = 0; i < size; ++i)
      66   129712128 :             mem[i].store(0xFF);
      67        6550 :     };
      68             : 
      69             :     /** setup marks all entries and ensures that bit_packed_atomic_flags can store
      70             :      * at least `b` entries.
      71             :      *
      72             :      * @param b the number of elements to allocate space for
      73             :      * @post bit_set, bit_unset, and bit_is_set function properly forall x. x <
      74             :      * b
      75             :      * @post All calls to bit_is_set (without subsequent bit_unset) will return
      76             :      * true.
      77             :      */
      78        1986 :     inline void setup(uint32_t b)
      79             :     {
      80        1986 :         bit_packed_atomic_flags d(b);
      81        1986 :         std::swap(mem, d.mem);
      82        1986 :     }
      83             : 
      84             :     /** bit_set sets an entry as discardable.
      85             :      *
      86             :      * @param s the index of the entry to bit_set
      87             :      * @post immediately subsequent call (assuming proper external memory
      88             :      * ordering) to bit_is_set(s) == true.
      89             :      */
      90     2213105 :     inline void bit_set(uint32_t s)
      91             :     {
      92     2213105 :         mem[s >> 3].fetch_or(1 << (s & 7), std::memory_order_relaxed);
      93     2213105 :     }
      94             : 
      95             :     /** bit_unset marks an entry as something that should not be overwritten.
      96             :      *
      97             :      * @param s the index of the entry to bit_unset
      98             :      * @post immediately subsequent call (assuming proper external memory
      99             :      * ordering) to bit_is_set(s) == false.
     100             :      */
     101     2172962 :     inline void bit_unset(uint32_t s)
     102             :     {
     103     2172962 :         mem[s >> 3].fetch_and(~(1 << (s & 7)), std::memory_order_relaxed);
     104     2172962 :     }
     105             : 
     106             :     /** bit_is_set queries the table for discardability at `s`.
     107             :      *
     108             :      * @param s the index of the entry to read
     109             :      * @returns true if the bit at index `s` was set, false otherwise
     110             :      * */
     111    10943103 :     inline bool bit_is_set(uint32_t s) const
     112             :     {
     113    10943103 :         return (1 << (s & 7)) & mem[s >> 3].load(std::memory_order_relaxed);
     114             :     }
     115             : };
     116             : 
     117             : /** @ref cache implements a cache with properties similar to a cuckoo-set.
     118             :  *
     119             :  *  The cache is able to hold up to `(~(uint32_t)0) - 1` elements.
     120             :  *
     121             :  *  Read Operations:
     122             :  *      - contains() for `erase=false`
     123             :  *
     124             :  *  Read+Erase Operations:
     125             :  *      - contains() for `erase=true`
     126             :  *
     127             :  *  Erase Operations:
     128             :  *      - allow_erase()
     129             :  *
     130             :  *  Write Operations:
     131             :  *      - setup()
     132             :  *      - setup_bytes()
     133             :  *      - insert()
     134             :  *      - please_keep()
     135             :  *
     136             :  *  Synchronization Free Operations:
     137             :  *      - invalid()
     138             :  *      - compute_hashes()
     139             :  *
     140             :  * User Must Guarantee:
     141             :  *
     142             :  * 1. Write requires synchronized access (e.g. a lock)
     143             :  * 2. Read requires no concurrent Write, synchronized with last insert.
     144             :  * 3. Erase requires no concurrent Write, synchronized with last insert.
     145             :  * 4. An Erase caller must release all memory before allowing a new Writer.
     146             :  *
     147             :  *
     148             :  * Note on function names:
     149             :  *   - The name "allow_erase" is used because the real discard happens later.
     150             :  *   - The name "please_keep" is used because elements may be erased anyways on insert.
     151             :  *
     152             :  * @tparam Element should be a movable and copyable type
     153             :  * @tparam Hash should be a function/callable which takes a template parameter
     154             :  * hash_select and an Element and extracts a hash from it. Should return
     155             :  * high-entropy uint32_t hashes for `Hash h; h<0>(e) ... h<7>(e)`.
     156             :  */
     157             : template <typename Element, typename Hash>
     158        2578 : class cache
     159             : {
     160             : private:
     161             :     /** table stores all the elements */
     162             :     std::vector<Element> table;
     163             : 
     164             :     /** size stores the total available slots in the hash table */
     165             :     uint32_t size;
     166             : 
     167             :     /** The bit_packed_atomic_flags array is marked mutable because we want
     168             :      * garbage collection to be allowed to occur from const methods */
     169             :     mutable bit_packed_atomic_flags collection_flags;
     170             : 
     171             :     /** epoch_flags tracks how recently an element was inserted into
     172             :      * the cache. true denotes recent, false denotes not-recent. See insert()
     173             :      * method for full semantics.
     174             :      */
     175             :     mutable std::vector<bool> epoch_flags;
     176             : 
     177             :     /** epoch_heuristic_counter is used to determine when an epoch might be aged
     178             :      * & an expensive scan should be done. epoch_heuristic_counter is
     179             :      * decremented on insert and reset to the new number of inserts which would
     180             :      * cause the epoch to reach epoch_size when it reaches zero.
     181             :      */
     182             :     uint32_t epoch_heuristic_counter;
     183             : 
     184             :     /** epoch_size is set to be the number of elements supposed to be in a
     185             :      * epoch. When the number of non-erased elements in an epoch
     186             :      * exceeds epoch_size, a new epoch should be started and all
     187             :      * current entries demoted. epoch_size is set to be 45% of size because
     188             :      * we want to keep load around 90%, and we support 3 epochs at once --
     189             :      * one "dead" which has been erased, one "dying" which has been marked to be
     190             :      * erased next, and one "living" which new inserts add to.
     191             :      */
     192             :     uint32_t epoch_size;
     193             : 
     194             :     /** depth_limit determines how many elements insert should try to replace.
     195             :      * Should be set to log2(n).
     196             :      */
     197             :     uint8_t depth_limit;
     198             : 
     199             :     /** hash_function is a const instance of the hash function. It cannot be
     200             :      * static or initialized at call time as it may have internal state (such as
     201             :      * a nonce).
     202             :      */
     203             :     const Hash hash_function;
     204             : 
     205             :     /** compute_hashes is convenience for not having to write out this
     206             :      * expression everywhere we use the hash values of an Element.
     207             :      *
     208             :      * We need to map the 32-bit input hash onto a hash bucket in a range [0, size) in a
     209             :      *  manner which preserves as much of the hash's uniformity as possible. Ideally
     210             :      *  this would be done by bitmasking but the size is usually not a power of two.
     211             :      *
     212             :      * The naive approach would be to use a mod -- which isn't perfectly uniform but so
     213             :      *  long as the hash is much larger than size it is not that bad. Unfortunately,
     214             :      *  mod/division is fairly slow on ordinary microprocessors (e.g. 90-ish cycles on
     215             :      *  haswell, ARM doesn't even have an instruction for it.); when the divisor is a
     216             :      *  constant the compiler will do clever tricks to turn it into a multiply+add+shift,
     217             :      *  but size is a run-time value so the compiler can't do that here.
     218             :      *
     219             :      * One option would be to implement the same trick the compiler uses and compute the
     220             :      *  constants for exact division based on the size, as described in "{N}-bit Unsigned
     221             :      *  Division via {N}-bit Multiply-Add" by Arch D. Robison in 2005. But that code is
     222             :      *  somewhat complicated and the result is still slower than other options:
     223             :      *
     224             :      * Instead we treat the 32-bit random number as a Q32 fixed-point number in the range
     225             :      *  [0, 1) and simply multiply it by the size. Then we just shift the result down by
     226             :      *  32-bits to get our bucket number. The result has non-uniformity the same as a
     227             :      *  mod, but it is much faster to compute. More about this technique can be found at
     228             :      *  http://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/ .
     229             :      *
     230             :      * The resulting non-uniformity is also more equally distributed which would be
     231             :      *  advantageous for something like linear probing, though it shouldn't matter
     232             :      *  one way or the other for a cuckoo table.
     233             :      *
     234             :      * The primary disadvantage of this approach is increased intermediate precision is
     235             :      *  required but for a 32-bit random number we only need the high 32 bits of a
     236             :      *  32*32->64 multiply, which means the operation is reasonably fast even on a
     237             :      *  typical 32-bit processor.
     238             :      *
     239             :      * @param e The element whose hashes will be returned
     240             :      * @returns Deterministic hashes derived from `e` uniformly mapped onto the range [0, size)
     241             :      */
     242     4248798 :     inline std::array<uint32_t, 8> compute_hashes(const Element& e) const
     243             :     {
     244     4248798 :         return {{(uint32_t)(((uint64_t)hash_function.template operator()<0>(e) * (uint64_t)size) >> 32),
     245     4248798 :                  (uint32_t)(((uint64_t)hash_function.template operator()<1>(e) * (uint64_t)size) >> 32),
     246     4248798 :                  (uint32_t)(((uint64_t)hash_function.template operator()<2>(e) * (uint64_t)size) >> 32),
     247     4248798 :                  (uint32_t)(((uint64_t)hash_function.template operator()<3>(e) * (uint64_t)size) >> 32),
     248     4248798 :                  (uint32_t)(((uint64_t)hash_function.template operator()<4>(e) * (uint64_t)size) >> 32),
     249     4248798 :                  (uint32_t)(((uint64_t)hash_function.template operator()<5>(e) * (uint64_t)size) >> 32),
     250     4248798 :                  (uint32_t)(((uint64_t)hash_function.template operator()<6>(e) * (uint64_t)size) >> 32),
     251     4248798 :                  (uint32_t)(((uint64_t)hash_function.template operator()<7>(e) * (uint64_t)size) >> 32)}};
     252             :     }
     253             : 
     254             :     /** invalid returns a special index that can never be inserted to
     255             :      * @returns the special constexpr index that can never be inserted to */
     256     2172962 :     constexpr uint32_t invalid() const
     257             :     {
     258     2172962 :         return ~(uint32_t)0;
     259             :     }
     260             : 
     261             :     /** allow_erase marks the element at index `n` as discardable. Threadsafe
     262             :      * without any concurrent insert.
     263             :      * @param n the index to allow erasure of
     264             :      */
     265     2213212 :     inline void allow_erase(uint32_t n) const
     266             :     {
     267     2213212 :         collection_flags.bit_set(n);
     268     2213212 :     }
     269             : 
     270             :     /** please_keep marks the element at index `n` as an entry that should be kept.
     271             :      * Threadsafe without any concurrent insert.
     272             :      * @param n the index to prioritize keeping
     273             :      */
     274     2172962 :     inline void please_keep(uint32_t n) const
     275             :     {
     276     2172962 :         collection_flags.bit_unset(n);
     277     2172962 :     }
     278             : 
     279             :     /** epoch_check handles the changing of epochs for elements stored in the
     280             :      * cache. epoch_check should be run before every insert.
     281             :      *
     282             :      * First, epoch_check decrements and checks the cheap heuristic, and then does
     283             :      * a more expensive scan if the cheap heuristic runs out. If the expensive
     284             :      * scan succeeds, the epochs are aged and old elements are allow_erased. The
     285             :      * cheap heuristic is reset to retrigger after the worst case growth of the
     286             :      * current epoch's elements would exceed the epoch_size.
     287             :      */
     288     2172962 :     void epoch_check()
     289             :     {
     290     2172962 :         if (epoch_heuristic_counter != 0) {
     291     2172878 :             --epoch_heuristic_counter;
     292     2172878 :             return;
     293             :         }
     294             :         // count the number of elements from the latest epoch which
     295             :         // have not been erased.
     296             :         uint32_t epoch_unused_count = 0;
     297    11010132 :         for (uint32_t i = 0; i < size; ++i)
     298    16511102 :             epoch_unused_count += epoch_flags[i] &&
     299     5501054 :                                   !collection_flags.bit_is_set(i);
     300             :         // If there are more non-deleted entries in the current epoch than the
     301             :         // epoch size, then allow_erase on all elements in the old epoch (marked
     302             :         // false) and move all elements in the current epoch to the old epoch
     303             :         // but do not call allow_erase on their indices.
     304          84 :         if (epoch_unused_count >= epoch_size) {
     305     3145752 :             for (uint32_t i = 0; i < size; ++i)
     306     3145728 :                 if (epoch_flags[i])
     307     1622326 :                     epoch_flags[i] = false;
     308             :                 else
     309     1523402 :                     allow_erase(i);
     310          24 :             epoch_heuristic_counter = epoch_size;
     311          24 :         } else
     312             :             // reset the epoch_heuristic_counter to next do a scan when worst
     313             :             // case behavior (no intermittent erases) would exceed epoch size,
     314             :             // with a reasonable minimum scan size.
     315             :             // Ordinarily, we would have to sanity check std::min(epoch_size,
     316             :             // epoch_unused_count), but we already know that `epoch_unused_count
     317             :             // < epoch_size` in this branch
     318         120 :             epoch_heuristic_counter = std::max(1u, std::max(epoch_size / 16,
     319          60 :                         epoch_size - epoch_unused_count));
     320     2172962 :     }
     321             : 
     322             : public:
     323             :     /** You must always construct a cache with some elements via a subsequent
     324             :      * call to setup or setup_bytes, otherwise operations may segfault.
     325             :      */
     326        2578 :     cache() : table(), size(), collection_flags(0), epoch_flags(),
     327        1289 :     epoch_heuristic_counter(), epoch_size(), depth_limit(0), hash_function()
     328        1289 :     {
     329        2578 :     }
     330             : 
     331             :     /** setup initializes the container to store no more than new_size
     332             :      * elements.
     333             :      *
     334             :      * setup should only be called once.
     335             :      *
     336             :      * @param new_size the desired number of elements to store
     337             :      * @returns the maximum number of elements storable
     338             :      */
     339        1986 :     uint32_t setup(uint32_t new_size)
     340             :     {
     341             :         // depth_limit must be at least one otherwise errors can occur.
     342        1986 :         depth_limit = static_cast<uint8_t>(std::log2(static_cast<float>(std::max((uint32_t)2, new_size))));
     343        1986 :         size = std::max<uint32_t>(2, new_size);
     344        1986 :         table.resize(size);
     345        1986 :         collection_flags.setup(size);
     346        1986 :         epoch_flags.resize(size);
     347             :         // Set to 45% as described above
     348        1986 :         epoch_size = std::max((uint32_t)1, (45 * size) / 100);
     349             :         // Initially set to wait for a whole epoch
     350        1986 :         epoch_heuristic_counter = epoch_size;
     351        1986 :         return size;
     352             :     }
     353             : 
     354             :     /** setup_bytes is a convenience function which accounts for internal memory
     355             :      * usage when deciding how many elements to store. It isn't perfect because
     356             :      * it doesn't account for any overhead (struct size, MallocUsage, collection
     357             :      * and epoch flags). This was done to simplify selecting a power of two
     358             :      * size. In the expected use case, an extra two bits per entry should be
     359             :      * negligible compared to the size of the elements.
     360             :      *
     361             :      * @param bytes the approximate number of bytes to use for this data
     362             :      * structure
     363             :      * @returns the maximum number of elements storable (see setup()
     364             :      * documentation for more detail)
     365             :      */
     366        1986 :     uint32_t setup_bytes(size_t bytes)
     367             :     {
     368        1986 :         return setup(bytes/sizeof(Element));
     369             :     }
     370             : 
     371             :     /** insert loops at most depth_limit times trying to insert a hash
     372             :      * at various locations in the table via a variant of the Cuckoo Algorithm
     373             :      * with eight hash locations.
     374             :      *
     375             :      * It drops the last tried element if it runs out of depth before
     376             :      * encountering an open slot.
     377             :      *
     378             :      * Thus:
     379             :      *
     380             :      * ```
     381             :      * insert(x);
     382             :      * return contains(x, false);
     383             :      * ```
     384             :      *
     385             :      * is not guaranteed to return true.
     386             :      *
     387             :      * @param e the element to insert
     388             :      * @post one of the following: All previously inserted elements and e are
     389             :      * now in the table, one previously inserted element is evicted from the
     390             :      * table, the entry attempted to be inserted is evicted.
     391             :      */
     392     2172962 :     inline void insert(Element e)
     393             :     {
     394     2172962 :         epoch_check();
     395     2172962 :         uint32_t last_loc = invalid();
     396             :         bool last_epoch = true;
     397     2172962 :         std::array<uint32_t, 8> locs = compute_hashes(e);
     398             :         // Make sure we have not already inserted this element
     399             :         // If we have, make sure that it does not get deleted
     400    19556658 :         for (const uint32_t loc : locs)
     401    17383696 :             if (table[loc] == e) {
     402           0 :                 please_keep(loc);
     403           0 :                 epoch_flags[loc] = last_epoch;
     404           0 :                 return;
     405    17383696 :             }
     406     2258764 :         for (uint8_t depth = 0; depth < depth_limit; ++depth) {
     407             :             // First try to insert to an empty slot, if one exists
     408     5527851 :             for (const uint32_t loc : locs) {
     409     5442049 :                 if (!collection_flags.bit_is_set(loc))
     410     3269087 :                     continue;
     411     2172962 :                 table[loc] = std::move(e);
     412     2172962 :                 please_keep(loc);
     413     2172962 :                 epoch_flags[loc] = last_epoch;
     414     2172962 :                 return;
     415             :             }
     416             :             /** Swap with the element at the location that was
     417             :             * not the last one looked at. Example:
     418             :             *
     419             :             * 1. On first iteration, last_loc == invalid(), find returns last, so
     420             :             *    last_loc defaults to locs[0].
     421             :             * 2. On further iterations, where last_loc == locs[k], last_loc will
     422             :             *    go to locs[k+1 % 8], i.e., next of the 8 indices wrapping around
     423             :             *    to 0 if needed.
     424             :             *
     425             :             * This prevents moving the element we just put in.
     426             :             *
     427             :             * The swap is not a move -- we must switch onto the evicted element
     428             :             * for the next iteration.
     429             :             */
     430       85802 :             last_loc = locs[(1 + (std::find(locs.begin(), locs.end(), last_loc) - locs.begin())) & 7];
     431       85802 :             std::swap(table[last_loc], e);
     432             :             // Can't std::swap a std::vector<bool>::reference and a bool&.
     433       85802 :             bool epoch = last_epoch;
     434       85802 :             last_epoch = epoch_flags[last_loc];
     435       85802 :             epoch_flags[last_loc] = epoch;
     436             : 
     437             :             // Recompute the locs -- unfortunately happens one too many times!
     438       85802 :             locs = compute_hashes(e);
     439             :         }
     440     2172962 :     }
     441             : 
     442             :     /** contains iterates through the hash locations for a given element
     443             :      * and checks to see if it is present.
     444             :      *
     445             :      * contains does not check garbage collected state (in other words,
     446             :      * garbage is only collected when the space is needed), so:
     447             :      *
     448             :      * ```
     449             :      * insert(x);
     450             :      * if (contains(x, true))
     451             :      *     return contains(x, false);
     452             :      * else
     453             :      *     return true;
     454             :      * ```
     455             :      *
     456             :      * executed on a single thread will always return true!
     457             :      *
     458             :      * This is a great property for re-org performance for example.
     459             :      *
     460             :      * contains returns a bool set true if the element was found.
     461             :      *
     462             :      * @param e the element to check
     463             :      * @param erase whether to attempt setting the garbage collect flag
     464             :      *
     465             :      * @post if erase is true and the element is found, then the garbage collect
     466             :      * flag is set
     467             :      * @returns true if the element is found, false otherwise
     468             :      */
     469     1990807 :     inline bool contains(const Element& e, const bool erase) const
     470             :     {
     471     1990807 :         std::array<uint32_t, 8> locs = compute_hashes(e);
     472     7913118 :         for (const uint32_t loc : locs)
     473     7338514 :             if (table[loc] == e) {
     474     1417538 :                 if (erase)
     475      690144 :                     allow_erase(loc);
     476     1421993 :                 return true;
     477     5922241 :             }
     478      569933 :         return false;
     479     1993380 :     }
     480             : };
     481             : } // namespace CuckooCache
     482             : 
     483             : #endif // BITCOIN_CUCKOOCACHE_H

Generated by: LCOV version 1.15