LCOV - code coverage report
Current view: top level - src - bloom.cpp (source / functions) Hit Total Coverage
Test: total_coverage.info Lines: 149 153 97.4 %
Date: 2020-09-26 01:30:44 Functions: 20 20 100.0 %

          Line data    Source code
       1             : // Copyright (c) 2012-2019 The Bitcoin Core developers
       2             : // Distributed under the MIT software license, see the accompanying
       3             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4             : 
       5             : #include <bloom.h>
       6             : 
       7             : #include <primitives/transaction.h>
       8             : #include <hash.h>
       9             : #include <script/script.h>
      10             : #include <script/standard.h>
      11             : #include <random.h>
      12             : #include <streams.h>
      13             : 
      14             : #include <math.h>
      15             : #include <stdlib.h>
      16             : 
      17             : #include <algorithm>
      18             : 
      19             : #define LN2SQUARED 0.4804530139182014246671025263266649717305529515945455
      20             : #define LN2 0.6931471805599453094172321214581765680755001343602552
      21             : 
      22          44 : CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn, unsigned char nFlagsIn) :
      23             :     /**
      24             :      * The ideal size for a bloom filter with a given number of elements and false positive rate is:
      25             :      * - nElements * log(fp rate) / ln(2)^2
      26             :      * We ignore filter parameters which will create a bloom filter larger than the protocol limits
      27             :      */
      28          22 :     vData(std::min((unsigned int)(-1  / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
      29             :     /**
      30             :      * The ideal number of hash functions is filter size * ln(2) / number of elements
      31             :      * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
      32             :      * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
      33             :      */
      34          22 :     nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
      35          22 :     nTweak(nTweakIn),
      36          22 :     nFlags(nFlagsIn)
      37          22 : {
      38          44 : }
      39             : 
      40        1981 : inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const
      41             : {
      42             :     // 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
      43        1981 :     return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
      44             : }
      45             : 
      46          47 : void CBloomFilter::insert(const std::vector<unsigned char>& vKey)
      47             : {
      48          47 :     if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
      49             :         return;
      50         825 :     for (unsigned int i = 0; i < nHashFuncs; i++)
      51             :     {
      52         780 :         unsigned int nIndex = Hash(i, vKey);
      53             :         // Sets bit nIndex of vData
      54         780 :         vData[nIndex >> 3] |= (1 << (7 & nIndex));
      55             :     }
      56          47 : }
      57             : 
      58          14 : void CBloomFilter::insert(const COutPoint& outpoint)
      59             : {
      60          14 :     CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
      61          14 :     stream << outpoint;
      62          14 :     std::vector<unsigned char> data(stream.begin(), stream.end());
      63          14 :     insert(data);
      64          14 : }
      65             : 
      66           9 : void CBloomFilter::insert(const uint256& hash)
      67             : {
      68           9 :     std::vector<unsigned char> data(hash.begin(), hash.end());
      69           9 :     insert(data);
      70           9 : }
      71             : 
      72         477 : bool CBloomFilter::contains(const std::vector<unsigned char>& vKey) const
      73             : {
      74         477 :     if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
      75           0 :         return true;
      76        1244 :     for (unsigned int i = 0; i < nHashFuncs; i++)
      77             :     {
      78        1201 :         unsigned int nIndex = Hash(i, vKey);
      79             :         // Checks bit nIndex of vData
      80        1201 :         if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
      81         434 :             return false;
      82         767 :     }
      83          43 :     return true;
      84         477 : }
      85             : 
      86          95 : bool CBloomFilter::contains(const COutPoint& outpoint) const
      87             : {
      88          95 :     CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
      89          95 :     stream << outpoint;
      90          95 :     std::vector<unsigned char> data(stream.begin(), stream.end());
      91          95 :     return contains(data);
      92          95 : }
      93             : 
      94          87 : bool CBloomFilter::contains(const uint256& hash) const
      95             : {
      96          87 :     std::vector<unsigned char> data(hash.begin(), hash.end());
      97          87 :     return contains(data);
      98          87 : }
      99             : 
     100           9 : bool CBloomFilter::IsWithinSizeConstraints() const
     101             : {
     102           9 :     return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
     103             : }
     104             : 
     105          87 : bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
     106             : {
     107             :     bool fFound = false;
     108             :     // Match if the filter contains the hash of tx
     109             :     //  for finding tx when they appear in a block
     110          87 :     if (vData.empty()) // zero-size = "match-all" filter
     111           0 :         return true;
     112          87 :     const uint256& hash = tx.GetHash();
     113          87 :     if (contains(hash))
     114          13 :         fFound = true;
     115             : 
     116         232 :     for (unsigned int i = 0; i < tx.vout.size(); i++)
     117             :     {
     118         145 :         const CTxOut& txout = tx.vout[i];
     119             :         // Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
     120             :         // If this matches, also add the specific output that was matched.
     121             :         // This means clients don't have to update the filter themselves when a new relevant tx
     122             :         // is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
     123         145 :         CScript::const_iterator pc = txout.scriptPubKey.begin();
     124         145 :         std::vector<unsigned char> data;
     125         666 :         while (pc < txout.scriptPubKey.end())
     126             :         {
     127         537 :             opcodetype opcode;
     128         537 :             if (!txout.scriptPubKey.GetOp(pc, opcode, data))
     129           0 :                 break;
     130         537 :             if (data.size() != 0 && contains(data))
     131             :             {
     132             :                 fFound = true;
     133          16 :                 if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
     134          10 :                     insert(COutPoint(hash, i));
     135           6 :                 else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
     136             :                 {
     137           2 :                     std::vector<std::vector<unsigned char> > vSolutions;
     138           2 :                     TxoutType type = Solver(txout.scriptPubKey, vSolutions);
     139           2 :                     if (type == TxoutType::PUBKEY || type == TxoutType::MULTISIG) {
     140           1 :                         insert(COutPoint(hash, i));
     141           1 :                     }
     142           2 :                 }
     143          16 :                 break;
     144             :             }
     145         537 :         }
     146         145 :     }
     147             : 
     148          87 :     if (fFound)
     149          29 :         return true;
     150             : 
     151         149 :     for (const CTxIn& txin : tx.vin)
     152             :     {
     153             :         // Match if the filter contains an outpoint tx spends
     154          91 :         if (contains(txin.prevout))
     155           4 :             return true;
     156             : 
     157             :         // Match if the filter contains any arbitrary script data element in any scriptSig in tx
     158          87 :         CScript::const_iterator pc = txin.scriptSig.begin();
     159          87 :         std::vector<unsigned char> data;
     160         225 :         while (pc < txin.scriptSig.end())
     161             :         {
     162         140 :             opcodetype opcode;
     163         140 :             if (!txin.scriptSig.GetOp(pc, opcode, data))
     164           0 :                 break;
     165         140 :             if (data.size() != 0 && contains(data))
     166          89 :                 return true;
     167         140 :         }
     168          87 :     }
     169             : 
     170          52 :     return false;
     171          87 : }
     172             : 
     173        8032 : CRollingBloomFilter::CRollingBloomFilter(const unsigned int nElements, const double fpRate)
     174        4016 : {
     175        4016 :     double logFpRate = log(fpRate);
     176             :     /* The optimal number of hash functions is log(fpRate) / log(0.5), but
     177             :      * restrict it to the range 1-50. */
     178        4016 :     nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
     179             :     /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
     180        4016 :     nEntriesPerGeneration = (nElements + 1) / 2;
     181        4016 :     uint32_t nMaxElements = nEntriesPerGeneration * 3;
     182             :     /* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
     183             :      * =>          pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
     184             :      * =>          1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
     185             :      * =>          log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
     186             :      * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
     187             :      * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
     188             :      */
     189        4016 :     uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
     190        4016 :     data.clear();
     191             :     /* For each data element we need to store 2 bits. If both bits are 0, the
     192             :      * bit is treated as unset. If the bits are (01), (10), or (11), the bit is
     193             :      * treated as set in generation 1, 2, or 3 respectively.
     194             :      * These bits are stored in separate integers: position P corresponds to bit
     195             :      * (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */
     196        4016 :     data.resize(((nFilterBits + 63) / 64) << 1);
     197        4016 :     reset();
     198        8032 : }
     199             : 
     200             : /* Similar to CBloomFilter::Hash */
     201     4412281 : static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, const std::vector<unsigned char>& vDataToHash) {
     202     4412281 :     return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash);
     203             : }
     204             : 
     205             : 
     206             : // A replacement for x % n. This assumes that x and n are 32bit integers, and x is a uniformly random distributed 32bit value
     207             : // which should be the case for a good hash.
     208             : // See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
     209     4412257 : static inline uint32_t FastMod(uint32_t x, size_t n) {
     210     4412257 :     return ((uint64_t)x * (uint64_t)n) >> 32;
     211             : }
     212             : 
     213      196342 : void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
     214             : {
     215      196342 :     if (nEntriesThisGeneration == nEntriesPerGeneration) {
     216          41 :         nEntriesThisGeneration = 0;
     217          41 :         nGeneration++;
     218          41 :         if (nGeneration == 4) {
     219          12 :             nGeneration = 1;
     220          12 :         }
     221          41 :         uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1);
     222          41 :         uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1);
     223             :         /* Wipe old entries that used this generation number. */
     224       15314 :         for (uint32_t p = 0; p < data.size(); p += 2) {
     225       15273 :             uint64_t p1 = data[p], p2 = data[p + 1];
     226       15273 :             uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2);
     227       15273 :             data[p] = p1 & mask;
     228       15273 :             data[p + 1] = p2 & mask;
     229             :         }
     230          41 :     }
     231      196342 :     nEntriesThisGeneration++;
     232             : 
     233     3945788 :     for (int n = 0; n < nHashFuncs; n++) {
     234     3749446 :         uint32_t h = RollingBloomHash(n, nTweak, vKey);
     235     3749446 :         int bit = h & 0x3F;
     236             :         /* FastMod works with the upper bits of h, so it is safe to ignore that the lower bits of h are already used for bit. */
     237     3749446 :         uint32_t pos = FastMod(h, data.size());
     238             :         /* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */
     239     3749446 :         data[pos & ~1] = (data[pos & ~1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration & 1)) << bit;
     240     3749446 :         data[pos | 1] = (data[pos | 1] & ~(((uint64_t)1) << bit)) | ((uint64_t)(nGeneration >> 1)) << bit;
     241             :     }
     242      196342 : }
     243             : 
     244      178978 : void CRollingBloomFilter::insert(const uint256& hash)
     245             : {
     246      178978 :     std::vector<unsigned char> vData(hash.begin(), hash.end());
     247      178978 :     insert(vData);
     248      178978 : }
     249             : 
     250      182656 : bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
     251             : {
     252      688996 :     for (int n = 0; n < nHashFuncs; n++) {
     253      662836 :         uint32_t h = RollingBloomHash(n, nTweak, vKey);
     254      662836 :         int bit = h & 0x3F;
     255      662836 :         uint32_t pos = FastMod(h, data.size());
     256             :         /* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */
     257      662836 :         if (!(((data[pos & ~1] | data[pos | 1]) >> bit) & 1)) {
     258      156496 :             return false;
     259             :         }
     260      506340 :     }
     261       26160 :     return true;
     262      182656 : }
     263             : 
     264      130113 : bool CRollingBloomFilter::contains(const uint256& hash) const
     265             : {
     266      130113 :     std::vector<unsigned char> vData(hash.begin(), hash.end());
     267      130113 :     return contains(vData);
     268      130113 : }
     269             : 
     270        8239 : void CRollingBloomFilter::reset()
     271             : {
     272        8239 :     nTweak = GetRand(std::numeric_limits<unsigned int>::max());
     273        8239 :     nEntriesThisGeneration = 0;
     274        8239 :     nGeneration = 1;
     275        8239 :     std::fill(data.begin(), data.end(), 0);
     276        8239 : }

Generated by: LCOV version 1.15